1,792 research outputs found

    Application of coupled-wave Wentzel-Kramers-Brillouin approximation to ground penetrating radar

    Get PDF
    This paper deals with bistatic subsurface probing of a horizontally layered dielectric half-space by means of ultra-wideband electromagnetic waves. In particular, the main objective of this work is to present a new method for the solution of the two-dimensional back-scattering problem arising when a pulsed electromagnetic signal impinges on a non-uniform dielectric half-space; this scenario is of interest for ground penetrating radar (GPR) applications. For the analytical description of the signal generated by the interaction of the emitted pulse with the environment, we developed and implemented a novel time-domain version of the coupled-wave Wentzel-Kramers-Brillouin approximation. We compared our solution with finite-difference time-domain (FDTD) results, achieving a very good agreement. We then applied the proposed technique to two case studies: in particular, our method was employed for the post-processing of experimental radargrams collected on Lake Chebarkul, in Russia, and for the simulation of GPR probing of the Moon surface, to detect smooth gradients of the dielectric permittivity in lunar regolith. The main conclusions resulting from our study are that our semi-analytical method is accurate, radically accelerates calculations compared to simpler mathematical formulations with a mostly numerical nature (such as the FDTD technique), and can be effectively used to aid the interpretation of GPR data. The method is capable to correctly predict the protracted return signals originated by smooth transition layers of the subsurface dielectric medium. The accuracy and numerical efficiency of our computational approach make promising its further development

    Electromagnetic Pulse Propagation over Nonuniform Earth Surface: Numerical Simulation

    Full text link
    We simulate EM pulse propagation along the nonuniform earth surface using so called time-domain parabolic equation. To solve it by finite differences, we introduce a time-domain analog of the impedance boundary condition and a nonlocal BC of transparency reducing open computational domain to a strip of finite width. Numerical examples demonstrate influence of soil conductivity on the wide-band pulse waveform. For a high-frequency modulated EM pulse, we develop an asymptotic approach based on the ray structure of the monochromatic wave field at carrier frequency. This radically diminishes the computation costs and allows for pulsed wave field calculation in vast domains measured by tens of thousands wavelengths

    Effects of Kinks on DNA Elasticity

    Full text link
    We study the elastic response of a worm-like polymer chain with reversible kink-like structural defects. This is a generic model for (a) the double-stranded DNA with sharp bends induced by binding of certain proteins, and (b) effects of trans-gauche rotations in the backbone of the single-stranded DNA. The problem is solved both analytically and numerically by generalizing the well-known analogy to the Quantum Rotator. In the small stretching force regime, we find that the persistence length is renormalized due to the presence of the kinks. In the opposite regime, the response to the strong stretching is determined solely by the bare persistence length with exponential corrections due to the ``ideal gas of kinks''. This high-force behavior changes significantly in the limit of high bending rigidity of the chain. In that case, the leading corrections to the mechanical response are likely to be due to the formation of multi-kink structures, such as kink pairs.Comment: v1: 16 pages, 7 figures, LaTeX; submitted to Physical Review E; v2: a new subsection on soft kinks added to section Theory, sections Introduction and Conclusions expanded, references added, other minor changes; v3: a reference adde

    Effects of Sequence Disorder on DNA Looping and Cyclization

    Full text link
    Effects of sequence disorder on looping and cyclization of the double-stranded DNA are studied theoretically. Both random intrinsic curvature and inhomogeneous bending rigidity are found to result in a remarkably wide distribution of cyclization probabilities. For short DNA segments, the range of the distribution reaches several orders of magnitude for even completely random sequences. The ensemble averaged values of the cyclization probability are also calculated, and the connection to the recent experiments is discussed.Comment: 8 pages, 4 figures, LaTeX; accepted to Physical Review E; v2: a substantially revised version; v3: references added, conclusions expanded, minor editorial corrections to the text; v4: a substantially revised and expanded version (total number of pages doubled); v5: new Figure 4, captions expanded, minor editorial improvements to the tex

    Piecewise Parabolic Method on a Local Stencil for Magnetized Supersonic Turbulence Simulation

    Full text link
    Stable, accurate, divergence-free simulation of magnetized supersonic turbulence is a severe test of numerical MHD schemes and has been surprisingly difficult to achieve due to the range of flow conditions present. Here we present a new, higher order-accurate, low dissipation numerical method which requires no additional dissipation or local "fixes" for stable execution. We describe PPML, a local stencil variant of the popular PPM algorithm for solving the equations of compressible ideal magnetohydrodynamics. The principal difference between PPML and PPM is that cell interface states are evolved rather that reconstructed at every timestep, resulting in a compact stencil. Interface states are evolved using Riemann invariants containing all transverse derivative information. The conservation laws are updated in an unsplit fashion, making the scheme fully multidimensional. Divergence-free evolution of the magnetic field is maintained using the higher order-accurate constrained transport technique of Gardiner and Stone. The accuracy and stability of the scheme is documented against a bank of standard test problems drawn from the literature. The method is applied to numerical simulation of supersonic MHD turbulence, which is important for many problems in astrophysics, including star formation in dark molecular clouds. PPML accurately reproduces in three-dimensions a transition to turbulence in highly compressible isothermal gas in a molecular cloud model. The low dissipation and wide spectral bandwidth of this method make it an ideal candidate for direct turbulence simulations.Comment: 28 pages, 18 figure

    Astrocyte dystrophy in ageing brain parallels impaired synaptic plasticity

    Get PDF
    Little is known about age-dependent changes in structure and function of astrocytes and of the impact of these on the cognitive decline in the senescent brain. The prevalent view on the age-dependent increase in reactive astrogliosis and astrocytic hypertrophy requires scrutiny and detailed analysis. Using two-photon microscopy in conjunction with 3D reconstruction, Sholl and volume fraction analysis, we demonstrate a significant reduction in the number and the length of astrocytic processes, in astrocytic territorial domains andin astrocyte-to-astrocyte coupling in the aged brain. Probing physiology of astrocytes with patch clamp, and Ca2+ imaging revealed deficits in K+ and glutamate clearance and spatiotemporal reorganisation of Ca2+ events in old astrocytes. These changes paralleled impaired synaptic long-term potentiation (LTP) in hippocampal CA1 in old mice. Our findings may explain the astroglial mechanisms of age-dependent decline in learning and memory.The research was supported by the Russian Science Foundation grant 20‐14‐00241

    First results of the Kourovka Planet Search: discovery of transiting exoplanet candidates in the first three target fields

    Full text link
    We present the first results of our search for transiting exoplanet candidates as part of the Kourovka Planet Search (KPS) project. The primary objective of the project is to search for new hot Jupiters which transit their host stars, mainly in the Galactic plane, in the RcR_c magnitude range of 11 to 14 mag. Our observations were performed with the telescope of the MASTER robotic network, installed at the Kourovka astronomical observatory of the Ural Federal University (Russia), and the Rowe-Ackermann Schmidt Astrograph, installed at the private Acton Sky Portal Observatory (USA). As test observations, we observed three celestial fields of size 2×22\times2 deg2^2 during the period from 2012 to 2015. As a result, we discovered four transiting exoplanet candidates among the 39000 stars of the input catalogue. In this paper, we provide the description of the project and analyse additional photometric, spectral, and speckle interferometric observations of the discovered transiting exoplanet candidates. Three of the four transiting exoplanet candidates are most likely astrophysical false positives, while the nature of the fourth (most promising) candidate remains to be ascertained. Also, we propose an alternative observing strategy that could increase the project's exoplanet haul.Comment: 11 pages, 16 figures; Accepted for publication in Monthly Notices of the Royal Astronomical Society 201

    Simulating Supersonic Turbulence in Magnetized Molecular Clouds

    Full text link
    We present results of large-scale three-dimensional simulations of weakly magnetized supersonic turbulence at grid resolutions up to 1024^3 cells. Our numerical experiments are carried out with the Piecewise Parabolic Method on a Local Stencil and assume an isothermal equation of state. The turbulence is driven by a large-scale isotropic solenoidal force in a periodic computational domain and fully develops in a few flow crossing times. We then evolve the flow for a number of flow crossing times and analyze various statistical properties of the saturated turbulent state. We show that the energy transfer rate in the inertial range of scales is surprisingly close to a constant, indicating that Kolmogorov's phenomenology for incompressible turbulence can be extended to magnetized supersonic flows. We also discuss numerical dissipation effects and convergence of different turbulence diagnostics as grid resolution refines from 256^3 to 1024^3 cells.Comment: 10 pages, 3 figures, to appear in the proceedings of the DOE/SciDAC 2009 conferenc
    corecore